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Figure 1: Our robots (here, a starfish-shaped robot) predict their affordances (such as the passability of an aperture given
their bodies) and take appropriate actions (attempt to pass through passable apertures). For the sake of the former, voxels
vote (on the basis of their local sensor readings) for impassability (red color) or passability (blue color). We evolve robots that
can discriminate between passable and impassable apertures while moving in the correct direction (on the other side of the
aperture if it is passable, in front of the aperture if it is impassable).

ABSTRACT
A vital component of intelligent action is affordance detection: un-
derstanding what actions external objects afford the viewer. This
requires the agent to understand the physical nature of the object
being viewed, its own physical nature, and the potential relation-
ships possible when they interact. Although robotics researchers
have investigated affordance detection, the way in which the mor-
phology of the robot facilitates, obstructs, or otherwise influences
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the robot’s ability to detect affordances has yet to be studied. We do
so here and find that a robot with an appropriate morphology can
evolve to predict whether it will fit through an aperture with just
minimal tactile feedback. We also find that some robot morpholo-
gies facilitate the evolution of more accurate affordance detection,
while others do not if all have the same evolutionary optimization
budget. This work demonstrates that sensation, thought, and action
are necessary but not sufficient for understanding how affordance
detection may evolve in organisms or robots: morphology must
also be taken into account. It also suggests that, in the future, we
may optimize morphology along with control in order to facilitate
affordance detection in robots, and thus improve their reliable and
safe action in the world.
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1 INTRODUCTION AND RELATEDWORKS
A vital component of cognition is affordance detection [10]: under-
standing what actions external objects afford the viewer (i.e., the
agent). These include the viewer’s body, its surrounding environ-
ment, and how these can potentially interact. If we were to deploy
robots in hazardous and exotic environments [12, 26], we would
need to endow such robots with a sense of what their bodies and
environments afford them for their safe action. Consider the case
of a robot that must pass through an aperture: not every aperture
is passable for every robot body, and attempting to pass through
an impassable aperture would be disastrous for the robot itself and
the agents interacting with it. Thus, we want robots that behave
according to correct predictions of affordances projected by objects
in their environment.

Natural agents evolved the innate ability to detect affordances [34].
Indeed, neuroscience has argued that no cognition is otherwise pos-
sible without understanding the interactions between one’s body
and the environment [16, 20]. Not surprisingly, researchers have
striven to endow artificial agents with the same ability. Different
communities developed different concepts and terminologies: self-
modeling in robotics [2, 3, 6], world models [11] in machine learn-
ing, intrinsic motivation [27], empowerment [17] and information-
driven measures [23] in the cognitive sciences. More specifically,
Slocum et al. [33], extending the work of [1] on the simplest behav-
ior that raises issues of genuine cognitive interest, evolved robots
to detect affordances by visually deciding which openings their
bodies could and could not fit through.

Still, whether and how morphology affects a robot’s ability to
detect affordances is yet an unexplored issue, despite the embodied
cognition paradigm [28], positing a deep entanglement between the
brain, the body, and the environment, suggests that morphology
can facilitate or obstruct the ability to evolve a behavior for an
animal or robot.

Here, we set out to study morphology choice in the evolution
of affordance detection and consider voxel-based soft robots [13]
as our instance of embodied agents. Voxel-based soft robots are
aggregations of cubic blocks of soft material: given that the interac-
tions between a soft robot’s body and its environment are hard to
predict [31], affordance detection is likely to be more arduous for
soft robots. These robots, equipped with minimal tactile feedback,
decide whether or not their bodies can fit through an aperture, and,
if so, then attempt to pass through it. We experiment with three
morphologies and optimize the parameters of their closed-loop
controllers with an Evolutionary Algorithm (EA) [7] since EAs al-
low for the exploration of search spaces unencumbered by a priori
assumptions.

Figure 2: A snapshot from the Voxcraft simulator. Red vox-
els are active voxels (i.e., actuators), while black voxels are
immovable and do not actuate.

We show experimentally that the choice of morphology plays a
key role: some morphologies facilitate the evolution of affordance
detection, while others do not. In particular, simpler morphologies
may be less suitable for detecting affordances. Looking forward,
we envision that the joint optimization of morphology and control
may facilitate the evolution of affordance detection in robots and
thus improve their reliable and safe action in the world.

2 EMBODIED AGENT MODEL
As embodied agents, we consider voxel-based soft robots. Soft
robots have a number of advantages over rigid robots, such as de-
forming their bodies [32] for, e.g., squeezing through tight spaces [4]
or underwater locomotion [5]. However, the interactions between a
soft robot’s body and its environment are more complex and harder
for the robot to predict [31]. For example, a soft robot may be able
to deform itself to fit through a narrow aperture but not be able
to determine what that deformation is. For this reason, we herein
investigate the evolution of soft robot affordance detection, as it is
likely to be more difficult compared to rigid robots.

First introduced by Hiller and Lipson [13], voxel-based soft
robots are aggregations of cubic blocks (the voxels) of soft material.
Actuation is volumetric: the voxels alter their volume according to a
control signal and contact forces with other bodies. Behavior at the
robot level emerges from the combined action of voxels contracting
and expanding. By virtue of their many degrees of freedom, these
robots are expressive yet challenging to control.

2.1 Mechanical model: the Voxcraft simulator
We simulate voxel-based soft robots and their environment using
the Voxcraft soft-body physics engine [21], the GPU-accelerated
version of Voxelyze [14]. Voxcraft simulates each voxel as a point
mass connected to up to six neighboring point masses with Euler-
Bernoulli beams. Every voxel has a specific temperature that, at
time step 𝑡 , changes according to:

Δ𝑇 = 𝛼𝑎𝑡 (1)

where 𝛼 ∈ R is a fixed amplitude across the robot and 𝑎𝑡 ∈ R is the
temperature change (actuation) output by the controller embedded
in the voxel. A beam, in turn, sets its resting length to the average of
the current temperatures of the two voxels it connects: the higher
the two temperatures, the more the beam stretches, the lower the
two temperatures, the more the beam contracts. The robot’s envi-
ronment contains objects constructed from voxels with unvarying
temperatures (Figure 2).
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Following Kriegman et al. [18], we set 𝛼 = 14.4714 and simulate
materials of 10 kg ·m−3 density, Young’s modulus of 104 Pa, Pois-
son’s ratio of 0.5, coefficient of static friction of 1, and coefficient
of dynamic friction of 0.5. Each voxel is 0.01m in length.

2.2 Sensing
We equip the voxels with touch, floor, and velocity sensors, and
a central pattern generator. Touch sensors perceive whether the
voxel is contacting a body other than the floor (e.g., a wall) or not
and return 1 if yes, and −1 if not. Floor sensors perceive whether
the voxel is touching the floor or not and return 1 if yes, and −1 if
not. Velocity sensors perceive the 𝑥- and 𝑦-velocity of the center
of mass of the voxel. Finally, a central pattern generator—relevant
to animal and robotic locomotion alike [15]—inputs the value of
sin(−2𝜋𝑡) at time step 𝑡 . Each voxel thus has 5 sensors.

2.3 Controller
We formulate the controller architecture to enable the robot to
predict affordances (such as the passability of an aperture) and take
appropriate actions (attempt to pass through passable apertures)
by local processing of sensed interactions between its voxels and
external objects.

We do so by beginning with the distributed controller proposed
in [24], consisting of artificial neural networks (a closed-loop sys-
tem), one for every voxel. We adopt the “homogeneous” variant
presented in [25], where the neural networks share the same param-
eters: because of themore compact search space, such homogeneous
representation is comparable to one where parameters are different
for every voxel. Moreover, as seen in Pigozzi et al. [29], parameter
sharing makes the controller architecture agnostic with respect to
the morphology: the number of input and output neurons and, thus,
the number of parameters does not depend on the arrangement
and number of voxels in the morphology.

There are 17 input and 2 output neurons (Figure 3). At time step
𝑡 , every neural network outputs 𝑎𝑡 ∈ [−1, 1] and 𝑣𝑡 ∈ [−1, 1], a
vote that is a confidence score of the voxel on what the affordance
is at the robot level, according to its local observation.

Every neural network takes as input its local observation 𝒙𝑡 ∈
R17: the 5 sensor values described in Section 2.2, but also, to in-
troduce a form of communication among the voxels, in the 𝑎𝑡−1
outputs from its six adjacent neighbors of the previous time step
and the 𝑣𝑡−1 outputs from its six adjacent neighbors of the previous
time step. If a neighbor is absent, we set those inputs to 0.

In preliminary experiments, we found that memory helped the
evolution of successful behaviors. So, in the reported experiments,
we implement each neural network as an Elman network, the sim-
plest instance of stateful neural network [9]:

𝒉𝑡 = 𝜎 (𝑾𝑥𝒙𝑡 +𝑾ℎ𝒉𝑡−1 + 𝒃ℎ) (2)
𝒚𝑡 = 𝜎 (𝑾𝑦𝒉𝑡 + 𝒃𝑦) (3)

where 𝒉𝑡 ∈ R𝑛mem is a memory vector and 𝜎 (·) is an element-wise
activation function. An Elman network is a three-layer neural net-
work with a recurrence in the second layer. The first layer has one
input neuron for every input; the second layer (Equation (2)) com-
putes a non-linear combination of the inputs and the memory of the
previous time step 𝒉𝑡−1 to output 𝒉𝑡 , which it then feeds to the third

Figure 3: The architecture of the Elman network. There is
one such network embedded within every voxel. We list the
outputs on top and the inputs to the left: these include the
vote and the actuation of the six adjacent neighboring voxels
of the previous time steps.

layer (Equation (3)) for the final output. 𝒉𝑡 then becomes the mem-
ory vector for the next time step and the network unfolds over time,
hence its recurrent nature. 𝑾𝑥 ∈ R𝑛mem×17, 𝑾ℎ ∈ R𝑛mem×𝑛mem ,
𝒃ℎ ∈ R𝑛mem ,𝑾𝑦 ∈ R2×𝑛mem , and 𝒃𝑦 ∈ R2 are the evolvable param-
eters of the network. We summarize the architecture of our Elman
network in Figure 3.

After preliminary experiments, we set 𝑛mem = 6, 𝒉0 = 0, and
tanh as activation function (to ensure the output lies in [−1, 1]).

We optimize a robot for a task by optimizing the vector 𝜽 =[
𝑾𝑥 𝑾ℎ 𝒃ℎ 𝑾𝑦 𝒃𝑦

] ∈ R𝑝 of parameters that specify every neural
network in the robot. For our setting, 𝑝 = 158.

2.3.1 Voting mechanism. At every time step 𝑡 , the robot performs
affordance detection by predicting whether the aperture in front of
it is passable or not. It does so as follows.

(a) If voxel 𝑖’s vote 𝑣𝑖,𝑡 is greater than 0, this denotes the voxel
predicting that the aperture is passable, and we set 𝑣𝑖,𝑡 to
1. Otherwise, we set 𝑣𝑖,𝑡 to 0, denoting a prediction that the
aperture is impassable;

(b) We compute the majority vote across all voxels and store it
in 𝑣𝑡 . If there is a split vote, we set 𝑣𝑡 to 1.

3 EXPERIMENTAL PROCEDURE
Our goal is to answer the following research questions:

RQ1 can affordance detection be evolved for soft robots?
RQ2 If yes, do some robot morphologies allow for the evolution

of more accurate affordance detection than others?

To this end, we evolved three different robot morphologies to
perceive whether an aperture is passable and whether they take
the appropriate action based on this conclusion (Section 3.2).
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Figure 4: The robot, with body length 𝑙body voxels, faces
three different environments. In the first, it must detect that
the aperture is impassable, and avoid attempting to move
through it: it should minimize its distance from the green
point at the end of the simulation. In the second and third
environments, the robot should detect that the aperture is
passable, pass through it, and minimize its distance from the
blue point at the end of the simulation.

3.1 Robots
We experimented with three different robot shapes: a 5 × 5 square

of voxels (the “flatworm”) , a 9×9 four-legged “starfish” ,

and a 6 × 6 “gecko” . The controller inputs, outputs, and pa-
rameters are the same for all voxels in all three shapes. The three
shapes entail different morphologies: the flatworm has no salient
features on its body, the starfish has four limbs, while the gecko
has many protrusions that it can potentially use as hooks (hence
the name, because geckos climb on trees through tiny hooks on
their finger palms).

3.2 Task
We initially place the robot in front of an aperture formed by two
walls (Figure 4). We evaluate the robot multiple times in the pres-
ence of apertures of differing widths and positions. The robot’s task
is to move to a target position on the far side of the aperture if it
judges it passable, and to a target position before the aperture (but
not at) if it judges it impassable. We build the walls with voxels
having the samematerial properties as the robot. We design the task
such that the decision to navigate the aperture or not is dependent
on the aperture width and the robot’s body length.

If we evaluated each 𝜽 in one environment with a passable aper-
ture and another with an impassable one, the robot could evolve
degenerate behaviors rather than affordance detection. For example,
the robot could evolve to reach out toward just one of the two walls.
Since the wall would be at a different relative position from the
robot in the two environments, different parts of the robot would
collide with the wall in the two environments. The robot could
evolve the ability to predict whether the aperture is passable just
from this information, but fail to generalize to new environments.
So, we evaluated each 𝜽 in three environments as shown in Figure 4.

For a robot with a body length 𝑙body voxels long, we set the two
walls 𝑙body voxels in front of the robot’s most anterior voxel. In the
first environment, we set the aperture width to 1 voxel, making
it impassable, and center it in front of the robot. In the second
environment, we set the aperture width to 𝑙body − 1 voxels, making
it passable, because the robot can move and deform itself. We offset
the aperture to the left by ⌈𝑙body/2⌉ voxels. The third environment is
the same as the second except that we offset the aperture ⌈𝑙body/2⌉
voxels to the right.

3.3 Fitness functions
As we wish to evolve robots that attempt to pass through passable
apertures, and also explicitly predict whether apertures are passable
or not, we must formulate two separate fitness objectives. We thus
introduce a bi-objective evolutionary optimization problem with
a “locomotion” fitness objective 𝑓loc and an “affordance detection”
fitness objective 𝑓aff.

For the 𝑖-th of the three environments, we measure the distance
𝑑𝑖 of the robot’s center of mass from the relevant target position
at the end of the simulation. Given that our EA requires bounded
objective values (see Section 3.4), we set 𝑑𝑖 = 𝑑max if 𝑑𝑖 > 𝑑max.
After preliminary experiments, we found 𝑑max = 5 to be sufficient.
Then, 𝑑𝑖 ∈ [0, 5].

For the 𝑖-th of the three environments, we also measure:

acc𝑖 = 1 − 1
𝑡final

𝑡final∑︁
𝑡=𝑡contact

|𝑣𝑡 − 𝑔𝑖 | (4)

where 𝑡final is the total number of time steps in the simulation,
𝑡contact is the time step at which the robot first touches the walls,
𝑣𝑡 is the robot’s prediction about the aperture’s passability (see
Section 2.3.1), and 𝑔𝑖 ∈ {0, 1} is the ground truth for the 𝑖-th envi-
ronment (0 for impassable and 1 for passable) and is available only
to the fitness function, not the robot. The summation on the right
of Equation (4) counts the number of time steps that the robot’s
majority vote (see Section 2.3.1) differs from the ground truth. Thus,
Equation (4) is the accuracy for the binary classification problem
of discriminating between passable and impassable environments.
Then, acc𝑖 ∈ [0, 1]. Given that we equip the robot with minimal
tactile sensors (see Section 2.2), no vote on the passability of an
aperture is meaningful without first touching it. With this in mind,
we start counting votes only after the robot has perceived its first
contact with the walls at 𝑡contact; in this way, dividing by 𝑡final indi-
rectly rewards the individuals for approaching the walls as soon as
possible. If the robot never touches the walls, we set acc𝑖 = 0.

After evaluating the robot in all three environments, we set 𝑓loc
and 𝑓aff to the worst of the robot’s three actions and the worst of
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its three attempts at affordance detection, respectively:

𝑓loc = max
𝑖=1,2,3

𝑑𝑖 (5)

𝑓aff = min
𝑖=1,2,3

a𝑖 (6)

to reward robustness across all environments.
Finally, we found some individuals achieved high fitness while

ignoring the aperture by crashing into the walls to climb over
them, or by circumventing the walls altogether. To punish these
exploitative behaviors, we assigned the worst possible fitness values
(i.e., 𝑑𝑖 = 5 and acc𝑖 = 0) to any individual that, at any time step,
has more than half of its voxels outside of the bounding volume
of the environment. The bounding volume of the environment is
3𝑙body voxels wide,

⌈
𝑙body
3

⌉
+ 1 voxels tall, and 5𝑙body voxels deep.

3.4 Evolutionary algorithm
EAs are effective multi-objective optimizers [36] and have proved
competitive on continuous control tasks [30, 35]. We employed
the Non-dominated Sorting Genetic Algorithm II (NSGA-II) [8],
an established bi-objective EA. NSGA-II evolves a population of
individuals by iterations according to a 𝜇+𝜆 generational model. We
initialize individuals at the very first iteration by uniform sampling
from the interval [−1, 1]𝑝 . At each iteration, NSGA-II sorts the
population into Pareto shells according to the two objectives 𝑓loc
and 𝑓aff. As the genetic operator, we used Gaussian mutation of
mean 0 ∈ R𝑝 and step-size 𝜎mut; as the selection operator, we used
crowded tournament selection of size 𝑛tour. We iterate until 𝑛evals
fitness evaluations have been computed.

The output of the above procedure is a set of Pareto-optimal
individuals, namely, those belonging to the first Pareto shell: of
these, we label as “specialists” those that are the best in one partic-
ular objective. We then have two specialist individuals 𝜽∗loc and 𝜽

∗
aff

according to our two objectives 𝑓loc and 𝑓aff. We are also interested
in individuals that perform well for both objectives. Then, we label
as “knee” the individual that is the closest (in the fitness space) to
the center of the bounding box of the first Pareto shell. We then
have one knee individual 𝜽k. After preliminary experiments and
relying on our experience, we set 𝜇 = 𝜆 = 50, 𝜎mut = 0.35, 𝑛tour = 5,
and 𝑛evals = 10 000 (corresponding to 200 iterations).

3.5 Experimental settings
For every experiment in this work, we performed 10 evolutionary
runs by varying the random seed for the EA. We performed all
statistical tests with the Mann-Whitney U rank test for independent
samples. As soft-body physics engine, we employed Voxcraft [21],
written in C++ and CUDA, and we developed a Python wrapper
for the evolutionary optimization. Simulation frequency is 200Hz
and we set each simulation to 50 s of simulated time, for a total of
𝑡final = 10 000 time steps. All simulations are deterministic for a
given random seed and controller. Each run took approximately
35 h on a Linux node with 4 cores at 2.10GHz, 10GB of CPU RAM,
and 3 Nvidia Tesla GPUs. The code is publicly available at https:
//github.com/pigozzif/Voxcraft-python.git.

4 RESULTS
In the following, we provide results for both research questions.

4.1 RQ1: can affordance detection be evolved for
soft robots?

Before delving into whether and how morphology affects a robot’s
ability to detect affordances, we first verify if we can evolve affor-
dance detection in soft robots. To test this question, we conducted
quantitative analysis by comparing the behaviors of robots con-
trolled by random or evolved controllers, and qualitative analysis
by inspecting their behaviors. For this question, we only considered
the starfish robot.

4.1.1 Quantitative analysis. As performance indexes, we measure
the fitness values for the specialist individuals, namely 𝑓 ∗loc for 𝜽

∗
loc

and 𝑓 ∗aff for 𝜽 ∗aff, but also, the fitness values for the knee individual,
namely 𝑓 kloc and 𝑓 kaff for 𝜽k.

As baselines, we compare our methodology with random con-
trollers. After preliminary experiments, we found controllers that
were random in both the outputs (actuation and affordance detec-
tion) to perform very poorly: the vast majority of them failed to
touch the walls and perform any affordance detection at all. Thus,
for a fairer comparison, we devised two controls, one for every
fitness function: one control where we randomize the controller
output for actuation and one control where we randomize the con-
troller output for affordance detection.We optimize the two controls
using the same EA of Section 3.4 and compare them with evolution
where neither of the outputs is randomized (i.e., our approach). As
a result, we have three different treatments:
EvolvedBoth: our approach, where neither of the outputs is ran-

domized;
EvolvedAffordance: at every time step and for every voxel of

every individual, we discard the output 𝑎𝑡 controlling tem-
perature change (and, thus, locomotion) and substitute it
with a random number in [−1, 1];

EvolvedLocomotion: at every time step and for every voxel of ev-
ery individual, we discard the output 𝑣𝑡 voting for affordance
and substitute it with a random number in [−1, 1].

We remark that all three have the same controller architecture
and thus the same size of the search space.

We summarize the results in Figure 5, which plots 𝑓loc and 𝑓aff in
terms of median ± standard deviation over the course of evolution,
for the specialists and the knee individuals. Moreover, we compare
in Figure 6 the Pareto shells at the beginning, the halfway, and
the end of evolution for three exemplar runs of the BothEvolved
treatment. The utopia point (the one optimizing both objectives)
sits in the upper-left corner.

Our EvolvedBoth treatment evolves affordance detection special-
ists that are better at affordance detection than random controllers,
and locomotion specialists that are better at locomotion than ran-
dom controllers. The picture is similar if we look at the knee indi-
viduals. The lines of Figure 5 also suggest that all treatments settle
on a plateau and that more evolution would unlikely occur.

From Figure 5, we spot different patterns for the two fitness
functions. Focusing on the affordance detection fitness (lower side
of Figure 5), the BothEvolved treatment outclasses the two controls
in terms of detection accuracy: by the end of evolution, its specialist
individuals can, on average, correctly detect whether the aperture is
passable or not at least 76.26 % of the time steps. That is significantly

https://github.com/pigozzif/Voxcraft-python.git
https://github.com/pigozzif/Voxcraft-python.git
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Figure 5: Median ± standard deviation (solid line and shaded
area) for the two fitness values for the 10 specialist individu-
als and 10 knee individuals drawn from the 10 evolutionary
runs, obtained with one experimental (EvolvedBoth) and two
control (EvolvedAffordance and EvolvedLocomotion) treat-
ments. The blue line on the upper plot is well above the upper
bound and would have skewed the other lines. For the loco-
motion objective, specialists and knees mostly coincide. Our
EvolvedBoth treatment evolves affordance detection signifi-
cantly better than the two controls.

better than what the EvolvedLocomotion treatment evolves (𝑝 <

0.0001). If we look at the knee individuals, the affordance detection
fitness is lower, but the 𝑝-value is still significant if we compare
them with the EvolvedLocomotion treatment. Thus, evolution can
find individuals that detect affordances significantly better than
random controllers (the EvolvedAffordance line is stuck at the
bottom because its specialists are unable to even reach the walls)
and that, to some extent, are effective in both objectives.

Looking at the locomotion fitness (upper side of Figure 5), both
the EvolvedBoth and the EvolvedLocomotion treatments evolve
effective individuals (𝑝-value not significant): they take less than
2 000 fitness evaluations to evolve the behavior of reaching the
target. Moreover, performance is similar for specialists and knee
individuals. We do not show the EvolvedAffordance line (the blue
line) as it would be stuck at such a high value to skew the remaining
lines. We visually inspected the behaviors evolved by EvolvedAffor-
dance and, not surprisingly, found them to drift away over the floor
until well exceeding the 𝑑max upper bound we set in Section 3.3.
Thus, we have to evolve also the locomotion behavior.

From Figure 6, we conclude that evolution is indeed taking place
in our EvolvedBoth treatment: as evolution progresses, individuals
in the Pareto shell from early during the evolutionary process are
dominated by individuals in later Pareto shells.

4.1.2 Qualitative analysis. We analyze the evolved behaviors both
in terms of locomotion and in terms of affordance detection.

Locomotion behaviors. For locomotion, an individual shows suc-
cessful behavior if it reaches the target position and, in passable
environments, correctly passes through the aperture in the walls.

We plot a top-view for the positions at the end of a simulation
for 5 of the specialist individuals 𝜽 ∗loc in Figure 7: for the same
individual, we then have a red point for the impassable environment,
a blue point for the environment passable to the left, and a green
point for the environment passable to the right. Moreover, the
dashed lines stand for the position of the walls.

From the figure, we conclude that effective locomotion behavior
did indeed evolve. Moreover, knee individuals behave nearly the
same as specialists. After visual inspection, not only we found them
to dodge the walls and slip in the aperture, but also to eventually
bend their trajectories to come as close as possible to the target.
With the exception of one run, which resulted in a specialist that
does not reach the target, but passes through the aperture and then
drifts away, most of them do reach and touch the target.

Affordance detection behavior. Our robots rely on minimal tactile
feedback for sensing their environment. Then, an individual shows
successful affordance detection behavior if a majority of the voxels
not only stand for the correct vote even if only a few of them are
sensing the walls but also if they retain the correct vote over time,
possibly even after losing contact with the walls. Our distributed
controller, having one neural network embedded inside each voxel,
allows us to observe in real-time how voting shifts over time across
the voxels.

We visually inspected the behaviors of the specialist individ-
uals 𝜽 ∗aff and depict the time-lapse for an exemplar specialist in
Figure 8 and include more at https://affordancesoftrobots.github.io/
affordancesoftrobots/. Red voxels vote for impassability, whereas
blue voxels vote for passability. In addition, we border a voxel in
yellow if its touch sensor is firing (i.e., it is contacting a wall). Frame
1 corresponds to the snapshot at the first time step and we take the
others at regular intervals of 1 500 time steps (approximately 7.5 s
of simulated time).

We found the behaviors of the vast majority of specialist and
knee individuals to consist of the same voting pattern. Those robots
evolved to vote for passability by default and to switch to impassi-
bility after detecting the pattern of sensory signals corresponding
to the impassable environment, or vice versa.

Referring to Figure 8, this successful voting pattern unfolds as
follows:
Frame 1: At the beginning, starting off apart from the walls, the

robot receives no tactile feedback from its environment. At
this point, individuals do not necessarily cast the correct
vote (blue color in Figure 8). The robot moves forward.

Frame 2: Once the robot contacts the walls with its arm, the touch
sensor located on the tip starts firing and sends its feedback
to the neural network embedded in the tip voxel.

https://affordancesoftrobots.github.io/affordancesoftrobots/
https://affordancesoftrobots.github.io/affordancesoftrobots/
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Figure 6: Pareto shells at different iterations (corresponding to the start, the halfway, and the end of evolution) for three
exemplar evolutionary runs of the BothEvolved treatment. The utopia point (the one optimizing both fitness functions) sits in
the upper-left corner. As evolution progresses, Pareto shells approach the utopia point more and more.
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Figure 7: Top-view of the final positions of 5 among the loco-
motion specialists at the end of the simulation. The dashed
lines stand for the position of the walls. In passable environ-
ments, the specialists evolve to eventually reach the target.
In impassable environments, the robots stay on the near side
of the walls: most of the red points overlap.

Frame 3: After a short “burn-in” period has elapsed, where voting
happens randomly, we see the correct vote (the red color
in Figure 8) propagate from the tip voxels to the rest of the
body until flipping the majority towards the correct vote.

Frame 4: Crucially, a majority of the voxels retain the correct vote
even after the touch sensor at the tip stops firing.

Through that evidence, we can answer positively to RQ1: we can
evolve soft robots with the ability to detect their affordances.

4.2 RQ2: do some robot morphologies allow for
the evolution of more accurate affordance
detection than others?

In order to investigate whether and how morphology affects the
evolution of affordance detection, we performed 10 additional evo-
lutionary runs for each of the two additional morphologies: the
“flatworm” and the “gecko” (see Section 3.1). We analyze and com-
pare the results with different morphologies both quantitatively
and qualitatively using the same methodology of Section 4.1. By
virtue of the distributed controller, all three morphologies entail
the same size of the search space, since the controller architecture
does not depend on the number of inputs and outputs, as well as
the number and arrangement of voxels.

(a) Frame 1 (b) Frame 2

(c) Frame 3 (d) Frame 4
Impassable Passable

Figure 8: Time-lapse for the voting of an exemplar specialist
in the impassable environment. Voxels bordered in yellow are
in contact with the walls at that time. Frame 1 corresponds
to the snapshot at the first time step and we take the others
at regular intervals of 1 500 time steps (approximately 7.5 s of
simulated time). Frame 1: when receiving no tactile feedback,
the robot votes for passability. Frame 2: the robot contacts
the wall and the touch sensor on the tip sends its feedback.
Frame 3: the correct vote propagates from the tip to the rest of
the body. Frame 4: a majority of the voxels retain the correct
vote even after the robot loses contact with the wall.

We summarize the results in Figure 9, which plots 𝑓loc and 𝑓aff in
terms of median ± standard deviation over the course of evolution,
for both the specialist and the knee individuals.

4.2.1 Affordance detection. For 𝑓acc, the three morphologies differ
both in terms of efficiency (i.e., speed of convergence) and in terms
of performance of the final specialist and knee individuals. On
one side, geckos quickly converge to a very high fitness value,
to the point of outclassing the starfishes; on the other side, the
𝑓 ∗acc for flatworms plateaus at around 50%: this is not statistically
different from mean 𝑓 ∗acc obtained by random controllers. Starfishes
evolved 𝑓acc values between those of flatworms and geckos. We
found the 𝑝-values to be significant among different morphologies
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Figure 9: Median ± standard deviation (solid line and shaded
area) of the two fitness values for the 10 specialist individuals
and the 10 knee individuals drawn from the 10 evolutionary
runs, obtained with three morphologies. For the locomo-
tion objective, specialists and knees mostly coincide. The
flatworm struggles to evolve affordance detection behavior,
while the gecko outperforms the other morphologies.

for both specialists and knee individuals. Finally, we repeated the
same EvolvedLocomotion control experiments of Section 4.2 for the
gecko and flatworm morphologies: geckos are statistically better
than their random counterparts on 𝑓acc, while the same is not true
for the flatworms (𝑝-value not significant).

These results suggest that robots with more complex morpholo-
gies (e.g., the gecko), where we define complexity simply by the
number of parts comprising the robot, might evolve more accurate
affordance detection than those with simpler morphologies (e.g., the
flatworm). To gain deeper insights into this intuition, we visually
inspected the evolved behaviors. We found geckos to exhibit voting
patterns similar to those discussed for the starfishes in Section 4.1.2:
one or a few tips perceive the wall in front of them, propagate the
correct vote across the body which retains it even in case the tips
lose contact with thewalls. Contrarily, we did not find signs of evolu-
tion in the flatworms: their voting patterns are random and chaotic.
https://affordancesoftrobots.github.io/affordancesoftrobots/ shows
one instance of this.

4.2.2 Locomotion. The difference among morphologies is less pro-
nounced when we look at the locomotion fitness (upper side of
Figure 9): the flatworm shape is thus not deficient per se, as it can
evolve to locomote, but it is deficient for affordance detection.

These results suggest that different morphologies can facilitate
the evolution of affordance detection behavior. One intuitive expla-
nation is that, in the flatworm, it is more difficult for each voxel to
distinguish itself: indeed, recalling that absent neighbors provide
inputs of 0, a voxel can distinguish itself by the pattern of absent
neighbors, but the majority of voxels in the flatworm actually have
the same neighborhood pattern. Thus, different environments re-
sult in patterns of sensing that are more difficult to discriminate.
Alternatively, a robot composed of more parts, or that is able to
radically change its shape, may obstruct the evolution of affordance
detection because self-contortions can more easily or rapidly alter
the kinds of affordances afforded by objects in its environment.
Altogether, these insights suggest that morphology plays an impor-
tant role in the evolution of affordance detection. Albeit we here
considered only a few robot body plans, and they remained fixed
during evolutionary optimization, in the future, joint optimization
of morphology and control may facilitate the evolution of affor-
dance detection in robots and thus improve their reliable and safe
action in the world.

5 CONCLUDING REMARKS
In the field of embodied cognition, no work to date has consid-
ered how morphology choice affects the ability of robots to detect
their affordances: what actions their bodies and the environment
afford them to accomplish. Considering the case of voxel-based
soft robots—whose softness makes the interactions between their
bodies and the environment less predictable—that is precisely the
question this paper addresses. We optimize voxel-based soft robots
to decide whether or not their bodies can fit through an aperture,
and, if so, then attempt to pass through it. We optimize the param-
eters of their closed-loop controllers with an Evolutionary Algo-
rithm (EA) and experiment with three morphologies. Our results
show that different morphologies can facilitate the evolution of
affordance detection behavior: some are effective, while others are
not and we conjecture the reason to be their differing degrees of
complexity. This work demonstrates that sensation and control
are necessary but not sufficient for understanding how affordance
detection evolves in organisms or robots: we must also take into
account morphology.

Future work will validate these simulated results in reality, using
soft voxel actuators [19]. New developments in stretchable electron-
ics could enable sim2real transfer of the sensing [22], by patterning
circuits that have light or contact sensors that would act as floor or
neighbor sensors, while IMUs could calculate velocity.
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